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EFFECT OF VELOCITY PROFILE DISTORTION I N  LONG 

dc ELECTROMAGNETIC FLOWMETER S 

by Shee-Ming   hen* 
Lewis Research Cen te r  

SUMMARY 

To make precision liquid-metal flow ra te  measurements using a dc elect~romagnetie 
flowmeter it is necessary to consider such effects a s  the distortion of the velocity profihe 

by the magnetic field and the entry and exit processes a t  the edges of the magnetic field. 
In this study, the distorted velocity profile and corresponding electric potential distribu- 

tion a r e  determined using a two-dimensional model in simulation of a long eleetrosmag- 

netic flowmeter. The method of finite differences is used in solving the magnetohydro- 

dynamic equations for a circular pipe with either a nonconducting o r  conducting wail-1. 

Calibration curves, a s  well a s  numerical solutions for the velocity and potential distribu- 
tions over the pipe cross section, a r e  obtained for various combinations of fluid and wall 

conductivity, thickness of the pipe wall, and Hartmann number. 

INTRODUCTION 

Electromagnetic flowmeters use  the principle that material moving in a magnetic 

field experiences an electric field in a direction perpendicular to both the magnetic: field 

and the motion. The voltage resulting from the electric field gives a direct indication of 
the velocity (or flow rate)  of the moving material.  

For several  decades, devices based on this principle have found applications in  a 
variety of fields, such a s  oceanography and medicine. More recently, eleckromqnetic 

flowmeters have become important in nuclear technology a s  devices for measuring the 

flow of radioactive fluids and, especially, the flow of liquid-metal coolants (such ais Na, 
* The work described herein was done at the Lewis Research Center a s  part of the 

NASA Summer Faculty Fellowship Program and a t  the Department of Electrical Engi- 

neering, City College of New York, under NASA Grant NGR-33-013 -025 with Norman C. 
Wenger, Lewis Research Center, a s  Technical Monitor. 



K, NLK, el C .  ) in the more advanced reactors and energy conversion devices. Satisfac- 

tory operation of these devices depends on the accurate measurement and control of the 

liquitl-metal flow rates. 

:En addltion to the stringent reliability requirements, many new problems ar ise  in us- 

lxg electromagnetic flowmeters for measuring the flow ra tes  of liquid metals because of 

their high temperatures and high electrical conductivities. As a result,  interest in the 

design of electromagnetic flowmeters for liquid-metal applications has been renewed and 

their accurate calibration becomes important. Since many of the f l o m e t e r s  used in the 

advanced reaetqrs a r e  quite large, it is preferable to comlpute a calibration curve for the 

flo~i67rncters based on measured parameters of the flowmeter and the l i p i d  metal rather 

t h a ~  to perform an expensive and time-consuming experimental calibration of each flow- 

meter. The purpose of this study is to determine the relationship between the flowmeter 

outpat voltage and the parameters of the flowmeter and liquid metal so that these calibra- 

tion curves can be  computed. 

The study will be restricted to the most common type of flowmeter used in liquid- 

metal applications. Figure 1 shows a cross -sectional view. The circular nonmagnetic 

pipe, situated in a uniform static magnetic field (between a pair of dc or permanent mag- 

netic poles), is usually made of conducting materials (stainless steel, etc., fo r  reasons 
~f strength at high temperature and resistance to corrosion). Electrodes for detecting 

"the c~utput voltage a r e  located at the two ends of a diameter, perpendicular to both the 

pipe axis and the magnetic field. 

The motion of the liquid metal in the magnetic field causes a current to be  induced in 

the liquid metal. This induced current reacts with the static magnetic field and produces 

a body force in the liquid metal which increases the pressure drop across the meter and 

distorts the velocity profile. In addition, the conducting pipe has a shunting effect on the 

outpsrt voltage. 

Figure 2 shows a side view of the same electromagnetic flowmeter. The distortion 

of the applied magnetic field due to the end current loops, known as the magnetic edge 

effect, and the entrance length over which the full distortion of velocity profile by the 

rnagirretie fiiePd takes place can have an appreciable effect on the measured voltage. In 

this study? however, it will be assumed that the electromagnetic flowmeter is "long" so 

that the magnetic edges a r e  far  away from the electrodes and the velocity profile of the 

fluid has h l ly  developed before passing through the electrodes. 

Previous analytical and experimental studies of various types of electromagnetic 

ilo~aairneters may be dated all the way back to Faraday's time. Williams (ref. 1) as early 

as I930 analyzed the long circular dc electromagnetic flowmeter with nonconducting pipe 

wai1,s. He showed that for some particular velocity distributions that a r e  axially sym- 

metric the potential difference at the outside edge of the stream is directly proportional 

to the average flow velocity and is independent of the electrical conductivity of the fluid. 

He  verified his result in experiments with a copper sulfate solution and with mercury. 



The general proof of this result for all axially symmetric velocity distributions was given 
by Kolin (ref. 2) in 1945. An exact mathematical solution of the circular flowmeter with 

nonconducting pipe walls has been obtained by Uflyand (ref. 3) ,  Uhlenbusch arid Fischer 

(ref. 4 ) ,  and Gold (ref. 5) in the form of an infinite ser ies  involving modified Bessel 
functions of the first kind. These ser ies  converge very slowly, however, unless the 

Martmann number M is small. Singh and Nariboli (ref. 6) obtained an asymptotic solg- 
tion for large Hartmann numbers which converges rapidly for M > 10. All these re- - 
sults , however, a r e  only valid for a flowmeter with nonconducting pipe walls. 

Elrod and Fouse (ref.  7) in 1952 obtained an analytical result for a long circxlar dc 

electromagnetic flowmeter with conducting walls by assuming that the velocity profile is 
axially symmetric. Since then, their analytical result has been referenced in many theo- 

retical discussions a s  well a s  forming the basis for comparison with much experimental 
data. Their result is not useful in making precision flow measurements in liquid metals, 
however, because they did not consider the distortion of the flow profile by the static 
magnetic field. 

The most extensive studies, both theoretical and experimental, of the electromag- 
netic flowmeter have been made by Shercliff (refs. 8 to 10). His analytical solutions for 
long circular dc electromagnetic flowmeters with both nonconducting and conducting walls 
a r e  also expressed in ser ies  form. These ser ies  converge very slowly except for vaiues 
of M that a r e  small (M < 2.5). He also obtained an approximate solution far the case 
where M is very large (M > 100) and the pipe walls a r e  very thin. Unforixnatelji, this 
range of M does not cover most of the range encountered in practice and frequently the 
pipe walls a r e  sufficiently thick s o  that the thin wall approximztion is not valid, 

The p u r p s e  of this study is to obtain solutions which a r e  valid for all values of 

Hartmann n u d e r ,  fluid and wall conductivity, and pipe wall thickness. The approach to  
be  used is to  find the complete velocity and potential distributions in the fluid and in the 

pipe wall. From these distributions, the calibrations in t e rms  of the ratio of the potera- 

t ial  difference between the two electrodes to the mean velocity can be  obtained. Since It 
is -extremely difficult, if not impossible, to obtain the exact velocity and potential at 
every p i n t  inside the flowmeter in closed form, a numerical solution becomes a possible 

alternative. With the aid of high-speed computers, many two-dimensional problems have 
been solved successfully using numerical methods. For this reason, the long de eleetra- 
magnetic flowmeter which can b e  described by a two-dimensional model is being iwvesti- 

gated initially. It is expected that the same numerical techniques developed from this 
study may b e  adopted successfully to  study the case of dc electromagnetic flowmeters of 
finite length for which a more complicated three-dimensional model must be  used, 



THE MODEL 

The model chosen for this study is a two-dimensional one, which applies to dc elee- 

tromagnetic flowmeters of infinite length or long flowmeters in which the distorted veloc- 

ity profile of the fluid has been fully developed into its ultimate shape before passing the 

electrodes. For convenience, as  shown in figure 1, the applied magnetic field is as-  
sumed to be in  the x-direction and the pipe axis coincides with the z-axis. The elec- 

trodes a r e  l~scated exactly at points B, C and A, D for the nonconducting and conducting 

pipe wall cases, respectively. 

In this analysis, the following assumptions a r e  made: 

(1) Steady state, incompressible, viscous fluid flow 

(2) Uniform static magnetic field 

(3) Magnetic permeability of fluid and pipe wall equal to that of free space 

(4) Homogeneous isotropic fluid and pipe wall conductivities 
(5) Fluid velocity in z-direction only (ref. ll), zero velocity at fluid and pipe 

wall interface 

(63 KO elleetrical contact resistance at fluid and pipe wall interface 

( 7 )  Neghgible electric currents due to convection of charges by the fluid motion 

BASIC EQUATIONS AND BOUNDARY CONDITIONS 

The basic governing equations a r e  derived from the following classic relations: 

Modified Navier -Stokes equation for an incompressible fluid: 

-C - 
where pd, 71, p, V, J ,  and a r e  the fluid density, viscosity, pressure, velocity, elec- 

t r i c  current density, and magnetic flux density, respectively. (Symbols a r e  also defined 

in  the appendix. ) 

MlameB1 ?E; equations : 

- - 
where E and H a r e  electric and magnetic field intensity, respectively. 



Ohm's law: 

- - - - 
J = af(E + V  X B )  (4 j 

where of is the electrical conductivity of the fluid. From equation (2), the electric 
potential U is defined by 

From equation (3) 

The flow velocity and the magnetic flux density can be  expressed. in  ec~mpo- 

nent form a s  (see fig. 1) 

where Bo is the applied magnetic flux density and Bi is the magnetic flux density due 

to the induced current. 

Substituting 3, v, and 3 from equations (4), (7) ,  and (8) into equation (1) g?ives 

The left-hand side of this equation reduces to zero. Thus 

becomes the first governing equation. 

The second governing equation is obtained by combining equations (4) to (8), giving 

For a two-dimensional model of a circular flowmeter, equations (9) and (10) are best 

written in cylindrical coordinates 



a2u 1 au 1 a2u avz cos 0 avz + -  + -  - B -  i n e + - -  

Equations j 11) and (12) can be  made dimensionless by letting 

p = z, dimensionless radius 
a 

vz V = , dimensionless velocity 

u W = -, dimensionless potential 
BoaVo 

a 2 
k = - - 3, dimensionless pressure gradient 

77Vo az 

1/2 
, Rartmann number 

where Vo is a characteristic velocity of the fluid. The final forms of the two governing 
equations 8;s ed in this study then become 

Equations (13) and (14) form two coupled linear elliptic differential equations in the mutu- 
ally dependent variables V and W. The solutions for V and W a r e  directly propor - 
tional to the dimensionless pressure gradient k and implicitly related to the Rartmann 



number M. Hence, the ratio of the potential difference between the electrodes to  the 

mean velocity is independent of k but a function of M. 
Equations (13) and (14) apply only in the fluid region. If the pipe wall. is eo~nductive, 

an additional equation must b e  introduced to describe the potential in the wall. This 

equation can b e  obtained from equation (14) by setting V = 0, giving 

The boundary conditions at the fluid surface for the nonconducting wall case are 

and 

For the conducting wall case, the boundary conditions at the fluid and wall interface 
a r  e 

where ow is the electrical conductivity of the wall. At the outer surface of the eondue-, 
ting wall, 



PREVIOUS RESULTS 

Since the results by Elrod, Fouse, and Shercliff a r e  widely known and have been used 
for comparison with many studies, theoretical a s  well a s  experimental, they a r e  summa- 
rized here. 

In obtaining their result for circular dc electromagnetic flowmeters, Elrod and 
Fouse (ref. 7) assumed that the velocity distribution is arbi trary but axially symmetric. 
Using the usual boundary conditions at the radii r=a  and r=b (eqs. (18) to (20)), they 
solved equations (14) and (15) exactly. Their result expressed in t e rms  of the flowmeter 
sensitivity is given by equation (21). (Flowmeter sensitivity is the ratio of the electric 
potential difference between points A and D, UAD, to the product of the average flow 
velocity V,, the pipe inner diameter 2a, and the applied magnetic field strength Bo. ) 

where R = b/a, y = ow/of, Vm = Va/Vo (the dimensionless mean fluid velocity), and 
WAD = UAdBoaVo (the dimensionless potential difference). F o r  the nonconducting wall 

ease (ow = 0). 

Sher cliff has solved the governing equations without assuming an axially symmetric 
velocity profile. His results for small  Hartmann number M a r e  

Circular nonconducting wall case: 



Circular conducting wall case: 

2 2 where I' = (1 -I- R )/[(I - y) + (1 + y)R 1. 

where 

2 In equations (25) and (26) Shercliff computed only the t e rms  up to M . The author 
4 has extended the solution up to  t e rms  of M . These ser ies  solutions converge very rap- 

idly for small M and give results that a r e  probably accurate to within 1 percent for  

M < 2. 

Shercliff also obtained the following approximate solutions for high values of Mr 

Circular nonconducting wall case: 

Circular thin conducting wall case: 



where C is the dimensionless calibration o r  sensitivity which is a function of 

(n,/gf)(b - a)M/a a s  shown in figure 3 According to  Shercliff, equations (27) and (28) 

are accurate to within 1 percent for M > 100. 

the numerical methods available for solving differential equations, the method of 

finite differences is more universally applicable and more frequently used than any other. 

When applying it to a two-dimensional problem, the a rea  of interest is divided into fine 

rneshes~ The intersections of the mesh lines a r e  called mesh points o r  nodes. The dif- 

ferential equation is replaced by a difference equation, where all  derivatives a r e  approx- 

imated by difference quotients over the mesh distances. By using the difference equation, 

the value of the solution at a given mesh point can be  related to the values of the solution 

at neighboring points and at boundary points. This technique generates n algebraic 

equations involving a total of n unknowns, where n is the number of mesh points. The 
final solution of the difference equation is obtained by solving for  the n unknowns. This 

is normally done by using an iterative process. 

Jn this study, the solutions for V and W a r e  obtained by the so-called "five-point" 

average formula, which is obtained by considering equations (13) to (15) in the general 

form of 

2 Refer l o  figure 4; the derivatives in V +(p, 6) may be  approximated in cylindrical coor- 

dinates at the point pi, Bi by the following (ref. 12): 



where h and a h  a r e  adjacent radial mesh distances, and 6 is the constant angular 

mesh distance. Substituting equation (30) into equation (29) gives 

To obtain the solution of this equation a t  each of the n mesh points, an iterative 
process known as  the Gauss -Seidel method (ref.  13) is used. In this method the new 
value of Gi at  the mesh point i is obtained by solving equation (3 1) using the pre~,rioras 
values of 4 at the points a ,  b ,  r ,  and I ,  and the value of .F(P, 8)  at the point i. The 

computed values of V and W have an e r r o r  approaching zero a s  fast a s  h2 or  h, dr- 
pending on whether a uniform radial mesh distance ( a  = 1) o r  a variable radial mesh dis - 
tance ( a  # 1) is used. 

In the nonconducting pipe wall case, the boundary conditions a r e  satisfied at r = a. 
or pi = 1 (see fig. 4) by letting Vi = 0 (eq. (16)) and Wa = Wb (eq. (17)). Similarly, -In 

the conducting wall case, the boundary conditions a r e  satisfied a t  r = a or  pi = I by 

letting Vi = 0 (eq. (16)) and at r = b o r  pi = R by letting Wa = Wb (eq. (20)). Bound- 
a ry  condition (18) is automatically satisfied since Wi is single valued on the blauaclary . 
The remaining boundary condition (eq. (19)) is usually handled by replacing equation (19) 
with a difference equation in the form of 

wKere hf and hw a r e  the mesh distances inside the fluid and pipe wall, respectively. 

However, the Wi obtained from this expression has an e r r o r  approaching zero on1.y as 
fast a s  hf o r  hw (ref.  12). To improve the accuracy at the boundary, an evivalent  

boundary condition given by equation (6) expressed in difference equation form is used 

instead of equation (19). The mesh s ize  a t  the boundary is also reduced by a factor of 4 
In computing W along the interface. 

The exact procedure used in applying the method of finite differences to this problem 

is outlined a s  follows: 

(1) Taking advantage of the fact that the velocity and potential distribution~s are sym- 

metric about both x and y axes, solutions covering one quadrant of the pipe cross section 
only a r e  computed. Mesh sizes of 20 to  26 radial points in the fluid plus eigM radial 
points in the wall (if it is conductive) by 18 angular points were used in the eomputatioars. 



(2) Initial values of velocity and potential a r e  assigned to each mesh point according 
to some reasonable distribution function. For example, a parabolic velocity distribution 
is used for low M, or  a distribution known to resemble the final solution is chosen for 
other values of M to save computer time. 

(3) Since the calibration is independent of k ,  it  is arbitrarily se t  equal to 1. 
(4) The difference equation representing the f irst  governing equation (eq. (13)) is 

solved first. The velocity at eaeh mesh point in the fluid region is computed in a sys - 
ternatic order by using the latest. values of the velocity and potential (from assumed ini- 
tial value or  step 5) at eaeh mesh point a s  soon as they become available. 

45) Similarly, the difference equation representing the second governing equation 

jeq, (14)) i s  then solved for the potential at each mesh point in the fluid using the latest 
values of the potential and velocity (from step 4) available. Equation (15) is also solved 
in  this step at each mesh point in the wall if the wall is conductive. 

(6) Completion of procedures 4 and 5 once is called one iteration. This iteration 
process is repeated until the fractional difference between two successive iterated results 
falls below a certain cutoff value. In obtaining the final results, a cutoff value of is 
used for Vm7 WBC (or WAD), and wBC/2Vm (or WAD/2Vm). 

The main concerns in using the numerical method a r e  the attainable accuracy and the 
computation time required. Usually the accuracy can be  improved by dividing the area of 
interest into finer meshes, thus increasing the number of mesh points. However, this 
will also increase the number of equations to b e  solved, and the eomputation time r e -  
quired will increase in an even greater proportion. For the low Hartmann number cases 
(M < 21, uniformly spaced (a! = 1) radial mesh points were used (20 radial by 18 angular 
for the noneonductive wall and (20 + 8) radial by 18 angular for the conductive wall). 
These mesh sizes correspond to 362 simultaneous equations for velocity and 360 or  504 
simultaneous equations for potential in the noncondueting or  conducting pipe wall cases, 
respectively. 

For higher Hartmann numbers, the velocity profile consists of a core of almost uni- 
form velocity and a thin boundary layer where the velocity drops rapidly from its core 
value to zero at the wall (ref. 10). In order to describe the velocity gradient near the 
pipe wall more accurately, gradually reduced radial mesh distances (a !  < 1) a re  used. 
The best values of these radial mesh sizes a r e  determined by "trial and error"  using the 
nonconducting wall case a s  a check, since the center velocity for different Hartmann 
numbers in this case can be calculated exactly (refs. 3 to 5). For M > 5, variable mesh - 
sizes up to 26 radial points by 18 angular points for the noncondueting wall case and 
(26 + 8) radial points by 18 angular points for the conducting wall case were used and 
found to be satisfactory. 

To decrease the required computer time the successive overrelaxation method 
QS 0 R) was used. This method is valid in this case because the coefficient matrix of the 
algebraic equations to be solved possesses the so-called property "A1 l (ref. 14). In this 



method, the value obtained from equation (3 1) for the $h iteration @!q) is modified with 

a larger  anticipated change by the relation 

* 
where @!q) is the new value for mesh point i resulting from cjth iteration and w is 

1 
called the accelerating factor. The ra te  of convergence in using the S O R method de- 
pends on the value of w chosen. Since there is no formula for calculating the best value 

of w in cylindrical geometry, its value must be  obtained by testing and estimation. It 
was found that the best value of w is independent of Hartmann number M and varies 

only slightly when the mesh s ize  is changed. The values of w chosen for the noricon- 
dueting and conducting wall cases a r e  1.9 1 and 1.93, respectively. To avoid any "over - 
shoot, " the S O R method is dropped by letting w = 1 (Gauss-Seidel) when the velocity 

and potential distributions a r e  approaching their final shape near the end of each corn- 
puter run. 

RESULTS 

Numerical solutions for the velocity and potential distributions inside a circular 
electromagnetic flowmeter were obtained for both the nonconducting and conductirig wall 

cases over the range of Hartmann number, M = 1 to M = 200. In the conducting wall 
case,  the conductivity and radius ratios used were uw/crf = 0. 1, 0. 5,  1.0, 1. 5,  2 0; 
and b/a = 1.05, 1. 15, 1.25, 1.35. These values cover the usual materials and pipe 
sizes commonly used in the liquid-metal flow ra te  measurements. Typical results are 
presented in graphical form. 

Figures 5 to 9 show velocity profiles at 8 = oO, 30°, 60°, and 90' (8 is measured 
with respect to  the applied magnetic field Bo o r  x-axis, s e e  fig. 1) inside the flowmeter 

for different values of Hartmann number M. Five cases a r e  shown: (1) noncond~lcting 

pipe wall; (2) uW/uf = 0. 1, b/a = 1.05; (3) %/of = 0. 1, b/a = 1. 35; (4) gw/of = 2 0, 
b/a = 1.05; and (5) uw/uf = 2.0 ,  b/a = 1.35. The velocity profiles a r e  normalized wtth 
respect to the dimensionless mean velocity Vm. 

Velocity contour diagrams for the same cases a r e  also shown in figures 10 to 14. 
The velocity contours a r e  normalized with respect to  the dimensionless center velocity 

Vc. The figures a r e  arranged in increasing order of the quantity [(b/a) - 11 ow/af Do 
observe the effect of thicker and more highly conductive pipe walls on the velocity 
profiles. 

It is quite obvious for the nonconducting wall case that the velocity profile is more 
flattened along the x-axis (8 = 0') than along the y-axis ( 8  = 90') due to  the body force 



created by the induced current. Therefore the assumption of axially symmetry in the 

sielociky profile is not valid, especially when the Hartmann number M is large. 

The effect of the conducting wall on the velocity profile may be observed by compar- 

ing these figures. In the case of uw/of = 0 . 1  and b/a = 1.05 (fig. 6), the effect is small 

at least for M values up to 100 since the wall conductivity and thickness a r e  small.  The 

resullgilzg velocity profiles for this case resemble more those in the nonconducting wall 

case (fig. 5). AS the quantity [@/a) - 11 u /Of increases (figs. 6 to 9), the effect of the 
W 

wall becomes quite pronounced. For the thickest, most highly conductive, wall case con- 

sidered (fig. 9) the maximum velocity is only 5 percent higher than the average velocity 

when M is 100. The velocity profile for this case is essentially that of slug flow when 

M is large. 
Figures 15 to  17 show the potential distribution along the y-axis for the nonconducting 

wall ease and two conducting wall cases ( u ~ / ~  = 0.1, b/a = 1.05 and uW/uf = 2.0,  

b/a = Is 353. Since the electrodes at B,  C and A, D a r e  located along the y-axis, these 

disirributionx determine the total potential difference between the electrodes. It is quite 

clear that  the potential distributions in a poorly conducting wall case (ow/uf, b/a = 1.05, 

?S A_,. , 163 resemble those in the nonconducting wall case (fig. 15) and a r e  less  affected by 

the Wartrnann number at least for M < 100 than those in the highly conducting wall case - 
(fig 17). However, in both conducting cases,  the maximum potential occurs inside the 
fluid rakher than on the fluid and wall interface o r  inside the pipe wall. This is in full 

agreement with the boundary condition (eq. (19)). Since there is no source for the in- 

duced potential inside the conducting pipe wall, the potential gradient across the boundary 

is negative. 

Calibration curves giving the ratio of the dimensionless potential difference to the 

dimensjonless mean flow velocity (~ i rg~ /2V,  and WAD/2Vm) a s  functions of Nartmann 

nurnbe- M for all cases studied a r e  presented in figures 18 to 22. The same results 

also appear in tabular form in table I. 

For small M the calibration curves agree with the results of Elrod and Fouse 

(eq. 92 2))  and Shercliff (eq. (26)) for the conducting wall cases, and with the result of 

Gold (ref. 5) over a much larger  range of M for the nonconducting wall case. As M 

increases the calibration curves initially decrease; and if the pipe wall is nonconductive, 

she curve becomes asymptotic to  about 0.93 a s  M becomes infinite (fig. 18). However, 
i f  rhe p:&pe wall1 is conductive, the curves reach a minimum in the M range of 10 to  50 

and then increase with increasing M and become asymptotic to  their initial value at 

M = 0 :as M becomes infinite. 
The reason for this behavior can b e  seen by examining the velocity profiles. F i rs t ,  

consider the velocity profile for a thick highly conductive pipe wall which is shown in fig- 

ure 9 .  The velocity profile is axially symmetric in the limit of both very high and very 

low M. For very low M the profile is parabolic, and for very high M the profile 



approximates that of slug flow. Thus, the solution of Elrod and Fouse, which holds only 

for symmetric profiles, can be  used for the limit of high and low M and the same re- 

sult will be  obtained. 

It is known from the general theory of magnetohydrodynamic channel flow (ref. 15) 
that the velocity profile also approximates that of slug flow in the limit a s  M becomes 
infinite even if the pipe walls a r e  thin and less  conductive. However, it takes a much 

larger  value of M to achieve this condition if  the walls a r e  thin o r  of low conductivity 

than i f  they a r e  thick and highly conductive. This effect can be  observed by comparing 

figures 5 to  9. Even at M = 100 the velocity profile for the thinnest, least conductive 

wall case considered (fig. 6) resembles that of the nonconductive pipe wall. Neverthe-. 
less ,  a s  M is increased, this velocity profile will eventually approach that of slug flow. 
Thus, for al l  conductive pipe wall cases,  each calibration curve in the limit as M be- 

comes infinite will approach its value at M = 0. 
The results for the nonconductive pipe wall a r e  quite different. The velocity profile 

for this case,  shown in figure 5, does not approach that of slug flow as  M becomes infi- 
nite. This is also born out by the general theory of magnetohydrodynamic chzn-asel flow 
(ref. 15). Consequently, the calibration curve does not recover to its value at a$ = 0 
but continually decreases a s  M becomes large and becomes asymptotic to about 0- 93 as 
M becomes infinite. This is in agreement with the value computed by Gold (ref* 5) and 
Shercliff (refs. 8 to 10) of 0.925. 

A rather difficult task in this study is to  estimate the accuracy of the calibrat4 10a re- 
sults.  F i rs t ,  the accuracy is limited by the accuracy of the model and the governing 
equations. Secondly, it depends on the cumulative accuracies of the computed velocity 
and potential values at all mesh points. Commonly, the e r ro r  of a value obtained at each 
mesh point may be divided into two parts ,  such a s ,  

Er ro r  = (S - N) = (S - s )  + (s - N) (33)  

where S is the  exact solution of the partial differential equation and s and N are the 

exact and computed solutions of the difference equation, respectively. The quantity 
(S - s) is the discretization e r r o r  and (s - N) is the stability er ror .  The discretization 
e r r o r ,  in general, can be  reduced by increasing the number of mesh points. It is limited 
only by such factors a s  computer t ime and storage. Rowever, the exact expression for 
the discretization e r ro r  is given in t e rms  of unknown derivatives for which no upper- and 

lower bounds can be found (ref. 14). To find its approximate effect on the final. resetlts , 
calculations were carried out for various mesh sizes with all other conditions the same, 
Using the nonconducting wall case at M = 100 and cutoff a s  an example, the results 
a r e  a s  follows : 



Changes of the same order of magnitude were also found for a few selected conducting 
wall eases. To save computer t ime,  maximum mesh sizes of 26 radial points by 18 angu- 
lar points and (26 + 8) radial points by 18 angular points were selected to obtain final r e -  
sults for the nonconducting and conducting wall cases , respectively . 

The stability e r r o r  (s - N) may b e  divided into the "roundoff" and the "cutoff" 
errors. The roundoff e r r o r  ar i ses  from the finite number of significant figures used to 
perform the arithmetic operations. This e r ro r  can cause instability i f  it is allowed to 
aceusnulate in an iterative process. The cutoff e r ro r  depends on the cutoff level at which 
the iteration process is terminated. 

The stability e r r o r  is a computational e r r o r  and usually it is not possible to deter- 
mine its magnitude. However, for the results obtained from this study, the stability 
error should be quite small for two reasons. F i rs t ,  the roundoff e r r o r  should b e  small 
since all computer runs were carried out in double precision (15 significant figures) and 
the total number of iterations never exceeded 4000. Secondly, the cutoff value, which 
termi~nates the calculation if  the fractional difference between two successive iterations 
falls below i t ,  was set  at for all resul ts .  Tests have shown that the improvement in 
accuracy by lowering the cutoff value usually is not worth the extra computer time. As 
an illustration, for the case of vw/vf = 0 .5  , b/a = 1.05, and M = 100, the ratios of 
&VAd2V, obtained for various cutoff values a r e  a s  follows: 

W ~ ~ ' 2 v m  

0.93122 
.93206 
.93261 

Mesh s ize  

Number of 

radial points 

15 
2 6 
3 0 

Cutoff value 

Number of 

an~wla r  points 

18 
18 

36 

Number of 
iterations 

WAD/2Vm 



It is obvious in this case, that it is not worthwhile to use cutoff value less than 1 0 ~ ~ .  

CONCLUDING REMARKS 

The numerical method of finite differences has been used to determine the complete 
velocity and potential distributions inside a long dc electromagnetic flowmeter for both 

nonconducting and conducting pipe wall cases. In the measurement of liquid-metal flow 
rates,  the velocity profile is distorted due to the body force created by the induced eur- 
rent and the applied magnetic field. The assumption of an axially symmetric velocity 
profile was shown to be not valid for many cases especially when the Hartmam anun2ber is 
large. The calibration results obtained from this study may be used to correct flow 
measurements for the effect of velocity profile distortion. The results a r e  based on the 

assumption that the electromagnetic flowmeter is sufficiently long so that the velocity 
profile is fully developed. For short electromagnetic flowmeters, in which the entiranee 
and magnetic edge effects must be included, a more complicated three-dimensional btudy 

will be required. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 18, 197 1, 

128-3 1 



APPENDIX - SYMBOLS 

inner radius of flowmeter pipe 

magnetic flux density 

induced and applied magnetic flux density, respectively 

outer radius of flowmeter pipe 

calibration or  sensitivity used in fig. 3 ,  UAD/Bo2aVa 

parameters in eq. (26) 

electric field intensity 

magnetic field intensity 

radial mesh distance 

radial mesh distances inside fluid and pipe wall, respectively 

unit vectors along x,  y , z coordinate axes 

electric current density 
r) 

a" ap dimensionless pressure gradient, - - - - 
1/2 wo az 

Hartmann number, Boa(o/q) 

computed solution of difference equation 

total number of mesh points 

pressure inside fluid 

ratio of outer-to-inner pipe radii, b/a 

radial distance 

exact solution of differential equation 

exact solution of difference equation 

electric potential 

electric potential difference between electrodes A and D 

electric potential diff erence between electrodes B and C 

dimensionless fluid velocity in z -direction , VZ/Vo 

fluid velocity vector 

mean fluid velocity 

dimensionless fluid velocity at center of pipe 



dimensionless mean fluid velocity, Va/Vo 

characteristic velocity of fluid 

fluid velocity in z -direction 

dimensionless electric potential, U/BoaVo 

dimensionless potential difference between electrodes A and D, IJAD/BoaV, 

dimensionless potential difference between electrodes B and C , UBC/BoaVo 

Cartesian coordinates 

ratio of adjacent radial mesh distances 

2 2 parameter used in eq. (25), (1 + R )/[(I - y) -1- (1 + y)R ] 

ratio of wall -to -fluid conductivity, 

angular mesh distance 

viscosity of fluid 

angular variable 

dimensionless radial distance, r /a  

fluid density 

electric conductivity of fluid and pipe wall, respectively 

arbi trary function of p and 8 

accelerating factor used in  S 0 R method 
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TABLE I. - CALIBRATION FOR dc ELECTROMAGNETIC FLOWMETER 

Hartmann Dimensionless mean Dimensionless potential, Ratio, Hartmann Dimensionless mean Dimensionless potential. Ratic. 

number, fluid velocity, w~~ WAD/2V, number, fluid velocity, w~~ W ~ d 2 V m  ! I 
M 'rn M v m 

Nonconducting pipe walla, uw/uf = 0 

1 0. 123 0.244 0.997 
2 , 116 ,230 ,992 
5 . 892~10- '  . 174 ,975 

10 ,603 ,115 .956 

20 ,352 . 6 6 2 ~ 1 0 - ~  ,940 
50 . 154 .288 ,934 

100 . 7 9 9 ~ 1 0 - ~  . 149 ,932 
200 .409 . 7 6 8 ~ 1 0 - ~  ,932 

b/a = 1.05,  uw/uf = 0. 1 

1 0.122 0.243 0.993 
2 . 116 ,228 ,988 

5 .882~10- '  . 171 ,970 
10 .585 . I 1 1  ,951  
20 ,329 . 6 1 7 ~ 1 0 - ~  ,937 

50 ,130 ,242 ,929 

a ~ a l u e s  sho;an for polential and rat io a r e  WBC and wBC/2Vrn, respectively 



TABLE I - Concluded CALIBRATION FOR dc ELECTROMAGNETIC FLOWMETER -- 

fluid vcloclty, 
M 



Y 

X 

Induced c u r r e n t s  

z 

Figure 1. - Cross-sectional v iew of c i r c u l a r  dc electromagnetic flowmeter. 

i 

Eddy cur ren ts  -' I , - Magnet pole face 

Figure 2. - Side view of c i r cu la r  dc electromagnetic flowmeter. 
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0 . 5  1.0 1.5 2.0 2.5 

Figure 3. - Effect of wall conductivity on sensitivity at high Hartmann number M. (From 
refs. 8 and 10, Shercliff. 

Figure 4. - Typical lattice used in  "five-point" average method. 



Normalized 

I l l l l l l l l l l  
0 .4  . 8  1.2 I. Q 2.0 

velocity, VlV, 

(c) 0 = 60°. (dl 0 = 90'. 

Figure 5. - Normalized velocity profiles for nonconducting wall. 



Normalized 
0 . 4  . 8  1 2  1.6 2.0 

velocity, VIV, 

Figure 6. - Normalized velocity profilesfor conductingwall with wall-to-fluid electrical conductivity ratio owlof of 0. l a n d  
fiobvmeter pipe outer-to-inner radius ratio bla of 105. 
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(c) 8 = 60'. (d l  8 = 90'. 

Figure 7. - Normalized velocity prof i lesfor conducting wall wi th wall-to-fluid electrical conductivity rat io owlo f  of 0. l a r id  
flowmeter pipe outer- to- inner radius ratio bla of 1.35. 
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Normalized 
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velocity, VIV, 

(c) 0 = 60'. (dl 0 = 90'. 

Figure 8. - Normalized velocity profilesfor conducting wall with wall-to-fluid electrical conductivity ratio owlof of 2.0 and 
iiowmeter pipe outer-to-inner radius ratio bla of 105. 
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Figure 9. - Normalized velocity profilesfor conducting wall with wall-to-fluid electrical conductivity ratio awlo f  a". 0 and 
flowmeter pipe outer-to-inner radius ratio bla of 1.35. 
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(c) M = 20. (d) M = 200. 

Figure 10. - Normalized velocity contours for nonconducting wall. 



Normalized 
velocity, 

VIVC a 

(a) Hartmann number, M = 2. 

Figure 11. - Normalized velocity contours for  conduct ing wall w i th  wall-to-fluid electrical conductivity rat io ow lo f  cf 0. 1, and  iiowmeter' 
pipe outer- to- inner radius ra t io  bla of 1.05. 
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(a) Hartmann number. M = 2 

Figure 12. -Normalized velocity contoursfor conducting wall wi th wall-to-fluid electrical conductivity ratio awlof of 0. 1 and flowmeter 
pipe outer-la-inner radius ratio bla of 1.35. 



(a) Hartmann number, M = 2. 
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Figure 13. - Normalized velocity contours for conducting wall wi th wall-to-fluid electrical conductivity rat io owlof of 2.0 and  flowmeter 
pipe outer-to-inner radius ratio bla of 1.05. 



,a i  Haf lmann number, M = 2. 

Figure 14. - Normalized velocity contours for conducting wall wi th wall-to-fluid electrical conductivity ratio owlof of 2.0 and flowmeter 
pipe outer- to- ianer radius ratio bla of 1.35. 



Normalized potential, 2W/WBC 

Figure 15. - Normalized potential d i s t r ibu t ion  along y-axis of f low- 
meter fo r  nonconduc t ing  wall. 

1. 2~ I bla 

Figure 16. - Normalized potential d i s t r ibu t ion  along y-axis of f low- 
meter  fo r  conduct ing wal l  w i th  wal l - to- f lu id electrical conduct iv i ty  
ra t io  ow lo f  of 9.1 and flowmeter pipe ou te r - to - inner  radius ra t io  
bla of 1.05. 



Normalized potential, 2W/WAD 

Figure 17. -Normalized potential distribution along y-axis of flow- 
meter for conducting wall with wall-to-fluid electrical conductivity 
ratio owlo f  of 2.0 and flowmeter pipe outer-to-inner radius ratio 
bla of 1.35. 
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Curve fitted to'computed points 

-% --- G O I ~  (ref. 5) 
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Hartmann number, M 

Figure 18. - Calibration curve for electromagnetic flowmetkr - nonconducting 
wall. 
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---- Shercl i f f  (ref. 8) 
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Figure 19. - Calibration curve for electromagnetic flowrneter - conducting 
wall wi th flowmeter pipe outer-to-inner radius ratio bla of 1.05. 
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Figure 20. - Calibration curve for electromagnetic flowmeter - conducting 
wall wi th flowmeter pipe outer- to- inner radius rat io bla of 1. 15. 
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Figure 21. - Calibration curve for electromagnetic flowmeter - conducting 
wall with flowmeter pipe outer-to-inner radius ratio bla of 1.25. 
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Figure 22. - Calibration curve for electromagnetic flowmeter - flowmeter 
pipe outer-to-inner radius ratio bla of 1.35. 
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